
  

Desired state for complex 
applications

Jochen Kellner <jochen@jochen.org>
Nuremberg, 2025-06-26



  

What we’ll look at...

● Our vision
● VM/Server deployment: a solved problem
● Simple services like Apache/Tomcat or databases
● What we plan: describe an SAP System – simple and complex
● At the horizon: SAP Landscapes
● Beyond the horizon: complex SAP Landscapes and their 

connections



  

Our vision for service configuration

● Describe a complete system with minimal input
● Generate a complete blueprint with conventions, standards, and 

derived options
● Deploy and manage the system with automation



  

VM/Server deployment: a solved problem

● VM/Server deployment: a solved problem
● IaaS: use terraform or opentofu
● Configure with cloud-init and automation 
● What requirements have applications?



  

Simple services like Apache or databases

● What parameters describe the database (e.g. DB name)?
● Internal options due to standards, derived from input
● Why is that useful?

– SAN names in certificates
– Monitoring
– Backup configuration, etc



  

Example: HANA database

● Input: 
– Database name <SID>
– Database tenants

● Output:
– OS user <sid>adm, tn_<tenant>adm
– Filesystemes /hana/data/<SID>, /hana/log/<SID>
– Logical host db<sid>, DNS, IP, SAN name in TLS certificate
– Backup and monitoring configuration



  

Example: HANA database

Server

/hana/data/<SID>

/hana/log/<SID>

IP/logical host



  

Example: HANA database cluster

● Additional input: 
– Database with system replication / cluster

● Derived additional output:
– Two servers instead of one, second network for s/r
– STONITH block devices, cluster software, cluster configuration
– Some changes for network/DNS configuration

● Take away: to order a cluster you don’t need to specify details



  

Example: HANA database cluster

Server

/hana/data/<SID>

/hana/log/<SID>

IP/logical host

Server

/hana/data/<SID>

/hana/log/<SID>

IP/logical host

Server

IP/logical host

Server

IP/logical host

Server

IP/logical host

Server

IP/logical host

Server

IP/logical host

Server 1 Server

/hana/data/<SID>

/hana/log/<SID>

IP/logical host

Server

/hana/data/<SID>

/hana/log/<SID>

IP/logical host

Server

IP/logical host

Server

IP/logical host

Server

IP/logical host

Server

IP/logical host

Server

IP/logical host

Server 2

IP/logical hostIP/logical hostIP/logical hostIP/logical hostIP/logical hostIP/logical hostIP 1 for s/r IP/logical hostIP/logical hostIP/logical hostIP/logical hostIP/logical hostIP/logical hostIP 2 for s/rSystemreplication

pacemaker

Service IP



  

Tooling...

● Minimal input: data types, values, validation
● Each service (building block) has conventions and standards
● Derive the Bill of Materials, terraform, etc.
● Documentation for missing automation

– RfC with standard input
– Document manual steps

● For now: python scripts
● Automation with ansible/SALT/others



  

Describe an SAP System – simple

● Input:
– SAP system id (SID)
– Part of which landscape (e.g. software release, components)
– Usage (e.g. production ⇒ disk mirror, backup schedule)
– Database source: DVD or system copy

● Output:
– logical hosts, IP addresses
– Users
– storage, filesystems, etc.



  

Example: SAP System

Server

Database SID

SAP SID

IP/logical host

IP/logical host



  

Describe an SAP System – templates

● Pre-defined architecture templates:
– All in one – one VM with DB and SAP System
– DB and SAP on different servers
– Fully clustered SAP system and database

● Doing something different means manual work, potential for 
errors, generates snowflakes



  

Describe an SAP System – complex

● Additional Input:
– Number of Appl Servers, CPU and RAM

● Output:
– 2 VMs HANA S/R, 2 VMs for ASCS/ERS, n VMs as Appl Servers
– Lots of logical hosts, IP addresses
– Predefined storage/file systems
– OS users



  

Example: SAP System

HANA S/R cluster

ASCS SID ERS SIDCluster IPs

ApplServer 1

ASCS SID

ApplServer 2

ApplServer n



  

Describe an SAP System

● Until now: manual preparation of the building blocks
● Future: Build me a complex system SID
● Why?

– We got more and more systems of that complexity
– We’ll get even more clustered systems for higher availability
– Manual building of the configuration is hard/error prone
– Our automation makes deployment pretty easy and fast



  

At the horizon: SAP Landscapes

● What is an SAP system landscape?

DEV

QAS

PRD

● Development of custom code and 
customizing

● Export transport order to /usr/sap/trans
● Import into QA
● Test and release in QA
● Import into PRD, education,...



  

At the horizon: SAP Landscapes

● What describes an SAP system landscape?
● „Shared“ /usr/sap/trans, usually with NFS/SMB
● Transport domain controller, transport groups
● Same software, similar customizing, staged updates
● Internal communication (RFC, DEV ⇔ QAS ⇔ PRD)
● Similar communication destinations?
● VLANs



  

Beyond the horizon: Complex SAP Landscapes

● Multiple transport landscapes (loose/tight coupling?)
● Diverse SAP software releases
● May need consistent recovery, system copies, lockstep 

upgrades…
● Communication patterns/firewall rules: 

– Dev ERP ⇒ Dev BW
– QA ERP ⇒ QA BW
– Prod ERP ⇒ Prod BW



  

Conclusion

● Building blocks are useful to build more complex systems
● Minimum input makes systems easy to order
● Defaults, conventions, and derived data are prerequisits to 

enable simple/minimal input and completly automated 
deployment/configuration

● Automatic deployment delivers speed and quality (less errors 
and better uniformity), but needs ongoing maintainance

● Complete description of a complex solution is possible, but a lot 
of work to achieve



  

This work is licensed under a Creative Commons 
Attribution-ShareAlike 3.0 Unported License.

It makes use of the works of Mateus Machado Luna.


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

